SPICA

Space Infrared Telescope for Cosmology & Astrophysics

(formerly know as HII/L2)

Takao Nakagawa ISAS/JAXA

(Institute of Space and Astronautical Science)

- Birth and Evolution of Galaxies
 - Star formation rate & AGN formation
 - Obscured Objects
- Star formation and interstellar chemistry
 - Fine Structure lines, PAH, ...
 - Astro-mineralogy
- Circumstellar Disks & Planetary formation
 - Possible Direct Detection of Exoplanets?

From Spitzer to Herschel & Beyond

- Previous Heritage
 - IRAS, COBE, ISO, IRTS, ...
- SPITZER now and ASTRO-F soon
 - Limited Spatial Resolution and Sensitivity
 - ASTRO-F All Sky Survey needs follow-ups
- Next Step
 - Higher resolution, better sensitivity
 - Cooled, Large Telescope!

Outline of **SPICA**

- Scientific Objectives
 - To reveal history of universe through Infrared Observations
- Instrument
 - Telescope: 3.5m, 4.5 K
 - Core λ : 5-200 μ m
 - Orbit: Sun-Earth L2 Halo
 - Warm Launch, Cooling in Orbit
 - No Cryogen
- Launch: Early 2010s

4

Presentations related to SPICA

- Oral Presentations
 - "SPICA Mission", T. Nakagawa
 - "Cryogenics for SPICA", T. Matsumoto
 - "BG Limited FIR Spectroscopy", M. Bradford
 - "H2 and HD emission from the 1st generation of Stars", R. Nishi
- Poster Presentations
 - "Telescope system for SPICA", T. Onaka
 - "Cryocoolers for SPICA", Sugita
 - "FIR Detection Limits and Sky Confusion", W. S. Jeong, S. Pak
 - "Disks and Extrasolar Planets", M. Tamura

Heritage from Previous IR Missions in Japan

IRTS on SFU

- 1st JapaneseSpace Mission for IR Astronomy
 - Launched in Mar.1995 onboard SFU
- •15 cm cooled telescope
- Mainly for Diffuse Emission

IRTS Heritage

- Scientific Heritage
 - Interstellar Chemistry
 - Infrared Background
 - Systematic Study of Late-type Stars
- Technical Heritage
 - Superfluid He in Space
 - ³He Refrigerator (0.3 K)

3.3 micron Continuum (Stars)

3.3 micron
Feature
(Polycyclic
Aromatic
Hydrocarbon)

ASTRO-F

- 68.5cmTelescope
- NIR-FIR
 - All-sky Survey in FIR
 - Pointing Obs. In NIR-FIR
- Launch: 2005

Heritage of ASTRO-F

- Expected Scientific Heritage
 - FIR All Sky Survey
 - Large-Area NIR-MIR Survey
 - Imaging Spectroscopy
- Technical Heritage
 - Mechanical Cryocooler
 - Light-weight Telescope
 - Large-Format Detectors

Strategy

- Scientific Strategy
 - Survey Observations
 - IRTS, ASTRO-F
 - Detailed Observations
 - SPICA
- Technical Strategy
 - Step by step

Requirements for SPICA

Re

Requirements for Telescope

- Cooled Telescope
 - Natural BG Limited
 - T < 5K
- Large Aperture
 - High Spatial Resolution
 - $\Delta \theta = \lambda / D$
 - 40AU@10pc, $50 \mu \text{ m} \rightarrow \text{D} > 3 \text{ m}$
 - Good Sensitivity
 - Collect. Area ∝ D²
 - Confusion ($\sigma \propto D^{-2.5}$ for cirrus)
 - 2mJy@100 μ m \rightarrow D > 3 m

Telescope Size

- The larger, the better,
 - but....
- Feasible Size: D = 3.5 m
 - Monolithic (not deployable) mirror
 - Much larger than those of previous missions (D < 1m)
 - Simple System
 - High feasibility
 - Smooth PSF

Outline of **SPICA**

- To reveal the history of Universe through Infrared Observations
- Telescope: 3.5m, 4.5 K
 - HSO: 3.5m, 80K
 - JWST: ~6m, <50K
- Core λ : 5-200 μ m
- Orbit: Sun-Earth L2 Halo
- Warm Launch, Cooling in Orbit
 - No Cryogen
- Launch: ~2010

Thermal Design of SPICA

Revolution of Design Philosophy

No Cryogen → Large Telescope

Effective Radiative Cooling + α

3K Space is not cold enough -> Additional Cooling

Heat Flow

Focal Plane Instruments

- First Priority
 - Mid-Infrared Camera & Spectrometer
 - 0.3" @ 5 μ m
 - with Coronagraphic Capability
 - Far-Infrared Camera & Spectrometer
 - **3.5"** @ 50 μ m
 - Availability of Large-format Arrays
- Second Priority
 - NIR Camera & Spectrometer
 - Sub-mm Camera & Spectrometer

SPICASensitivity

- Optimized for Mid-& Far-Infrared
 - Most Sensitive among proposed missions @ 15-130 μ m
- Complimentary to HSO & JWST

Sensitivity Gain for Spectroscopy

- Huge Gain over Warm Telescopes
 - Beats confusion
- Fine Structure
 Lines can be
 detected up to
 Z~5

R & D Program for SPICA

Technical Issues

- Cryogenic System
 - Especially Mechanical Cryocoolers
- Light-Weight, Cryogenic Telescope
- Detectors
 - Large-Format
 - Very low NEP
- Spacecraft System
 - Fine Attitude Control
 - Thermal control

Cryocoolers: Requirements

- Stirling Cooler
 - Pre-cooler
 - 200mW @ 20K
- JT Cooler (1)
 - To cool telescope and MIR instrument
 - 30 mW @ 4.5 K
- JT Cooler (2)
 - To cool FIR detectors
 - 10 mW @ 1.7 K

Stirling Cooler

ASTRO-F

- **■**Goal: 200 mW @ 20 K → Ok!
- Working for more than 3.5 years!
- ■To be flight-proven in 2005 (ASTRO-F)
 - Also ASTRO-E2, Selene, NeXT, VSOP-2

JT Cooler (1)

Developed for **SMILES**

(Superconducting Submillimeter-wave Limb-emission Sounder)

- •Goal: 30 mW @ 4.5 K → OK!
- Working for more than 8,000 hours!
- To be flight-proven in 2006

JT Cooler (2): 1K-class cooler

- •Goal: 10 mW @ 1.7 K
- ■³He for Low Temp.
- Working! 12mW@1.7K

Telescope: Requirements

- Diffraction Limit at $\lambda > 5 \mu$ m
- Operat. Temp.4.5 K
- Light-Weight: 700 kg as a system
- Choice of Material

Specific Stiffness (E/ρ) [kNm/g]

ASTRO-F Heritage

- 68.5 cm R.C.
- 5.8 K
- Diff. Limit @5 μ m
 - tested @ 10K
- SiC
 - Light (1 1 k g)
 - Porous Core
 - CVD Coat
 - Not applicable for 3.5 m telescope

SPICA Telescope Candidate (1)

(Sintered SiC: Herschel Technology)

- Passive Support is OK for SPICA
 - Simple system

SPICA Telescope Candidate (2)

- Rigid Mirror with C/SiC Composite
 - High Toughness
- Fixed Support System with small Distortion
 - Passive Support
- Active Actuators (Optional)

New Material: C/SiC Composite

- Advantage
 - Composite Material
 - Controllable Properties
 - High Damage Tolerance
 - Large, monolithic Mirror
- Improvements
 - Large CTE at Low-T?
 - Improved
 - Small Specific Stiffness ?
 - Improved
 - E/ ρ ~120 GPa g⁻¹ cm³
 - Surface Roughness?
 - Improved (<20 nm rms)

BBM: 70cm C/SiC Mirror

BBM: 70cm C/SiC Mirror

- Grinding Finished
- Now being Polished
- Optical
 Performance
 test at Liq. He
 Temp. is
 Scheduled

Active Actuators (Optional)

Three-Actuator system is effective for low-order Error

Errors to be corrected

Errors after 2nd Mirror Correction (piston, tilt, focus)

Errors after the correction by 2nd Mirror and 3 Actuators

Errors after the correction by 2nd Mirror and 9 Actuators

Detectors: Requirements

- Good Sensitivity
- Large-Format

Large-format FIR Detector

Ge:Ga Monolithic array.

Direct In-Bump of Detectors on Readout Electronics

Key Technology for Large-format Array

Current Status and Schedule

Current Status

- Compiling Proposal for JAXA
 - To put SPICA on Japanese Strategic Plan of Space Science
 - Scientific Objectives, Mission Description, Detailed Design Study
- Submitted two proposals for NASA
 - To put SPICA on NASA's strategic plan
 - Background-Limited Infrared –Submm Spectrograph: BLISS (P.I. M. Bradford)
 - Survey of Infrared Cosmic Evolution: SIRCE (P.I. H. Moseley)
- Funding after the launch of ASTRO-F?

Other International Collaboration

- Korea
 - Successful collaboration on ASTRO-F Data reduction
 - Successful Launch of FIMS (FUV Imaging Spectrograph) on STSAT-1 in 2003
 - Very much interested in Collaboration of Hardware
- Also interest from
 - Europe, Taiwan, ...

- Huge Jump from Previous Missions
 - 3.5 m cooled telescope
 - Previous cooled telescopes < 1m
- Uniqueness
 - Optimized for MIR & FIR
 - Complementary with other Missions
- High Feasibility
 - On the basis of technologies available now (or to be available soon)
- Precursor for the Next Step
 - SAFIR, SPECS, ...

